A weak Galerkin method for elasticity interface problems

نویسندگان

چکیده

This article introduces a weak Galerkin (WG) finite element method for linear elasticity interface problems on general polygonal/polyhedral partitions. The discrete divergence and gradient operators are discretized as polynomials computed by solving inexpensive local each element. developed WG has been proved to be stable accurate with optimal order error estimates in the H1 norm. Some numerical experiments conducted verify efficiency accuracy of proposed method, addition, its uniform convergence independent jump coefficients incompressibility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIB Galerkin method for elliptic interface problems

Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defin...

متن کامل

Matched interface and boundary method for elasticity interface problems

Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface pr...

متن کامل

A note on the local discontinuous Galerkin method for linear problems in elasticity

Abstract. In this paper we present a mixed local discontinuous Galerkin formulation for linear elasticity problems in the plane with Dirichlet boundary conditions. The approach follows previous dual-mixed methods and introduces the stress and strain tensors, and the rotation, as auxiliary unknowns. Next, we use suitable lifting operators to eliminate part of the unknowns of the corresponding di...

متن کامل

An Unfitted Discontinuous Galerkin Method Applied to Elliptic Interface Problems

In this article an unfitted Discontinuous Galerkin Method is proposed to discretize elliptic interface problems. The method is based on the Symmetric Interior Penalty Discontinuous Galerkin Method and can also be interpreted as a generalization of the method given in [A. Hansbo, P. Hansbo, An unfitted finite element method based on Nitsche’s method for elliptic interface problems, Comp. Meth. A...

متن کامل

A Galerkin Boundary Node Method for Two-Dimensional Linear Elasticity

In this paper, a Galerkin boundary node method (GBNM) is developed for boundary-only analysis of 2D problems in linear elasticity. The GBNM combines the variational form of a boundary integral formulation for the elastic equations with the moving least-squares approximations for generating the trial and test functions. Unlike the boundary node method, the main idea here is to use the Galerkin s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2023

ISSN: ['0377-0427', '1879-1778', '0771-050X']

DOI: https://doi.org/10.1016/j.cam.2022.114726